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Abstract
Internet-of-things (IoT) devices have rapidly gained popularity in people’s daily

lives. While these devices provide many smart functionalities and enable new ap-
plications, they raise several security and privacy concerns and practical operational
challenges for device users and vendors. With their growing adoption and sheer vol-
umes in deployment, IoT devices have become attractive targets for attackers, and
many recent security incidents have broad and serious impacts. Meanwhile, IoT
devices can collect a wide range of personal data through sensors and ubiquitous
placements. It is an important challenge for device vendors to protect users’ pri-
vacy and manage the access control properly. In addition, device vendors have to
invest heftily in cloud infrastructures to mitigate the limited computation resources
on devices. With more and more devices installed in the future, the demand for more
computation will also increase.

We attribute these concerns and challenges of future IoT deployment partially to
the predominant monolithic design of IoT devices and applications. Device vendors
nowadays are responsible for many tasks, including addressing security and pri-
vacy concerns and maintaining their infrastructure to facilitate application demands.
However, device vendors mainly focus on building compelling applications to at-
tract more users. Therefore, they have to prioritize certain tasks over fulfilling other
responsibilities given limited engineering resources. As a result, the current mono-
lithic design leads to many vulnerabilities, security incidents, and inefficiencies.

In this thesis, we propose three new system architectures to split various func-
tionalities current IoT device vendors need to manage themselves and offload them
to third-parties. These offloading solutions improve the overall security, privacy,
and efficiency in future smart home landscapes. Specifically, we demonstrate the
following benefits of functionality splitting through efficient and secure designs for
IoT devices. First, we can improve device security by relieving developers from
the burden of managing third-party libraries themselves. Second, we can better pro-
tect users’ privacy by having IoT devices delegate the task of managing ownership
and data access control for users’ private data. Finally, we can help reduce device
vendors’ management overhead and operating costs by enabling local computation
offloading across different devices in users’ homes, while providing integrity and
security guarantees for the computation results.
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Chapter 1

Introduction

Internet-of-Things (IoT) devices have rapidly gained popularity in modern homes, buildings,
and shared spaces [26, 46, 84]. Equipped with a diverse set of sensors and actuators, IoT devices
enable many new applications and smart functions.

With their growing ubiquity in people’s daily lives, IoT devices have started to raise more
and more concerns to device users. These devices keep breaking out the news of high-profile
security incidents [5, 64, 67, 89], plotting a worrisome landscape of future IoT deployment with
a large number of devices [2, 84]. Moreover, IoT devices can collect various sensitive data from
their sensors (e.g., audio, video, behavior), raising additional privacy concerns for device users.

Meanwhile, many IoT devices are heavily resource-constrained and can not perform heavy-
weight computation locally. Therefore, they must utilize device vendors’ cloud services to assist
with application functionalities. Exposing these devices to the Internet further exacerbates the
aforementioned security and privacy concerns. In addition, managing cloud infrastructures for
these transient computation demands incurs additional operating costs and extra responsibilities
such as protecting user data privacy for device vendors.

These concerns and operational challenges mentioned above can be attributed, at least par-
tially, to the predominant monolithic design of IoT devices. As illustrated in Figure 1.1, device
vendors nowadays are responsible for implementing the entire device software and hardware
stack, as well as the backend services and applications on the cloud. However, their main busi-
ness focus is building compelling applications for their smart devices to attract users. With
limited engineering resources, device vendors must prioritize certain application and feature de-
velopments, falling behind in fulfilling other responsibilities. On the other hand, many common
functionalities are critical to the device’s operation but are less relevant to extending the device’s
unique feature sets.

In this thesis, we explore new opportunities to split those functionalities that are “uninterest-
ing” to individual device vendors to third-parties to address many future concerns in IoT deploy-
ment. Although code offloading has long been studied and advocated for applications such as
mobile systems [16], enabling functionality splitting in IoT devices imposes new challenges.
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Figure 1.1: The current monolithic design of IoT device firmware and cloud backend applica-
tions. Device vendors need to implement and integrate all components in blue. Orange lines
indicate communication over the public Internet.

1.1 Overview of the Thesis
The goal of this thesis is to break down the existing monolithic design of IoT devices and ser-
vices, offload key functionalities, and design novel system architectures to improve the overall
security, privacy, and cost efficiency of future IoT deployments. Specifically, this thesis identifies
several opportunities for function offloading and proposes practical and secure solutions toward
this goal in the following aspects:

1. Improving device security by relieving developers from the burden of managing third-party
libraries themselves.

2. Protecting user privacy by enabling IoT devices to delegate ownership management and
data access control.

3. Reducing devices’ operating costs and enhancing application performance by offloading
computation and neural network inferences across local devices.

To alleviate the added overhead of offloading, we identify key performance bottlenecks and
incorporate optimization solutions to improve the practicality of our systems. To address security
concerns that arise from offloading to external parties outside of device vendors’ control, we
employ several principled approaches to conduct security analyses of our system designs.

1. Improving device security by relieving developers from the burden of managing third-
party libraries themselves (§2). We first investigate the security challenges in IoT device
firmware, specifically from their poor management of third-party libraries. Similar to tradi-
tional software systems, IoT devices use third-party libraries extensively. Vulnerable libraries,
if left unpatched, can affect massive numbers of IoT devices (e.g., CallStranger [88] and Rip-
ple20 [90]). Unfortunately, our analysis shows that existing IoT device vendors do not patch
their library vulnerabilities promptly, which underscores a huge security threat from outdated
library usage and exposed attack surfaces.

We propose a new architecture to take over the library management responsibility from in-
dividual device vendors to a central service in users’ local homes. Devices can utilize the latest
copy of the library on the trusted central hub without worrying about patching those libraries
themselves. We employ many existing security tools to provide an isolated execution envi-
ronment for each device and preserve the confidentiality and integrity of their communication.
With additional optimization techniques, we implemented a practical solution with low overhead
(< 15% latency increases in most cases) and high scalability (supporting hundreds of devices
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with a single hub).

2. Protecting user privacy by enabling IoT devices to delegate ownership management
and data access control (§3). In addition to securing IoT devices using the previous solution,
another important challenge in the future ubiquitous IoT deployment is to protect device users’
privacy even under complicated use cases and ownership management scenarios. Specifically,
IoT devices installed in shared spaces and temporary residences are often “owned” by building
managers but their actual “users” are separated from their owners.

We propose a novel model of IoT device ownership well-suited to address these management
difficulties in the emerging IoT deployment beyond typical smart homes and implement a new
system architecture to realize this vision. This architecture removes the role of determining
device ownership and securely storing users’ private data from the individual device’s list of
responsibilities. Instead, we isolate these functionalities into their own service, enabling data
owners to retain control over their data while minimizing the required trusted computing base on
various entities. We apply formal security analysis and verify the new protocol design satisfies
all of our security goals.

3. Reducing devices’ operating costs and enhancing application performance by offloading
computation and neural network inferences across local devices (§4). The first two parts of
the thesis focus on addressing the security and privacy concerns, in particular from the device
users’ perspective. Although device vendors may be interested in adopting these approaches to
stay attractive to the end-users, in this final part of the thesis, we will explore new opportunities
for functionality splitting that can directly benefit the device vendors. Specifically, we will inves-
tigate how to leverage existing local resources to enable computation offloading for the emerging
machine learning applications in a secure and cost-efficient way.

We propose a new offloading mechanism and an efficient verification algorithm to ensure
the integrity of machine learning inferences in IoT devices. With this approach, device vendors
can enlist the assistance of other devices co-located in the same user’s local home to perform
heavyweight machine learning inferences. We design a new verification algorithm aiming to
reduce the communication overhead while retaining high confidence in verification correctness
compared to related works.

Thesis Statement: By combining formal security analysis and performance optimization tech-
niques, we can enable IoT device vendors to offload functionalities to improve overall IoT de-
ployment security, privacy, and cost efficiency.

The remainder of this proposal is outlined as follows:
• Chapter 2 describes completed work on leveraging network infrastructure to secure com-

mon third-party library management.
• Chapter 3 describes completed work on coordinating mobile devices to enable flexible

device ownership and data protection at the application level.
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• Chapter 4 outlines proposed work on designing efficient computation offloading across
local devices while preserving security and privacy.

• Chapter 5 presents my expected timeline in completing the remaining work for the thesis
and plan for graduation.

4
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Chapter 2

Securing IoT Devices by Offloading
Third-Party Library Management

This section of the thesis illustrates the security benefits for IoT device vendors to offload library
management responsibilities to a central trusted service. We first present our study on real-world
IoT device firmware and demonstrate the widespread issue of mismanaged third-party libraries
and its security implications. We identify the opportunity and potential benefits of consistently
applying library security patches in IoT devices.

To achieve our vision and reduce the attack surface of future IoT deployment, we propose
a new system architecture, Capture, that centralizes library management tasks across heteroge-
neous IoT devices. We propose the use of a central hub that maintains the security upkeep of
common libraries and enable local devices to share the up-to-date library runtime. Although the
security benefits of updating library dependencies are fairly obvious, we need to address several
challenges in enforcing isolation, preserving device integrity, and reducing adoption barriers to
make our solution practical.

The rest of this section describes Capture at a high level. Additional details on our completed
work in this space are presented in a full paper on this topic [92].

2.1 Background

This section provides background on current IoT device software and hardware stacks, related
IoT application frameworks and commercial operating systems, and home IoT networks.

2.1.1 IoT Device System Stacks

IoT devices use a variety of hardware and software. Their heterogeneity raises the complexity in
managing smart devices in homes. Figure 2.1 illustrates three representative IoT devices and their
system stack based on teardown blogs [1, 18]. For devices with more capable hardware (such as
ARM Cortex-M micro processors), they can utilize Linux operating system and rich set of soft-
ware libraries (e.g., OpenSSL). On the other hand, inexpensive devices with resource-constrained
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Figure 2.1: Current IoT device software stacks and network communication. Devices have a
variety of platforms (ARM Cortex-M, ESP32) but utilize similar third-party libraries.

microcontrollers (e.g., Espressif ESP-32 with 520 KB RAM [24]) can use lightweight real-time
operating systems (RTOSes) and libraries (e.g., WolfSSL) for limited functionalities.

Given that IoT device vendors are incentivized to focus their efforts on building compiling
high-level applications (Applications A, B, C in the illustration), they sometimes fall short in
securing these devices and addressing vulnerabilities in various aspects of the IoT system stack.
Several projects have attempted to address these vulnerabilities by modifying the software de-
sign. Vigilia [77] requires devices to have public facing driver programs to communicate with
home automation applications on the cloud. They also introduces capability-based network ac-
cess control to limit device local communication. Other efforts propose enhancements at the
application-layer to improve system security, such as adding operation logging [57], capability-
based cloud applets design [82], and verification services for home automation applets [50].

2.1.2 IoT Application Frameworks and OSes
We now describe previous efforts by industry and academia to address IoT software stacks’ secu-
rity challenges by proposing new holistic device operating systems and application development
frameworks. HomeOS [19] proposes a unified PC-like platform to manage all local devices.
Commercial IoT frameworks emphasize their security offerings and ease of management for
third-party developers. Microsoft Azure Sphere [52], Particle OS [61], and AWS Greengrass [3]
all provide services to manage device library updates on behalf of developers. These frameworks
also include native support for application-level over-the-air upgrades, reducing the barrier for
developers to patch bugs. Samsung SmartThings Device SDK [65] reduces the developer bur-
den of managing library updates by directly offering high-level APIs in the SDK (e.g., MQTT
services). Developers do not need to worry about patching libraries, as long as they regularly
update the SDK runtime.

2.1.3 Home IoT Networking
Previous sections described IoT devices’ system stacks and existing approaches to secure them
individually. Now we will briefly explain the current smart home networking setup and previous
approaches improve security via networking design.

While installing a new device at home, users typically connect the device directly to the
Internet by associating them with their home WiFi router, or through a vendor-provided hub
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(e.g. Samsung SmartThings Hub and the Philips Hue bridge) which is then cloud-connected.
Internet-connected devices can be publicly accessible (via Network Address Translation (NAT)
from routers) for functionality reasons, inadvertently becoming reachable by attackers from the
Internet as well [13, 87]. Although sometimes devices can be restricted from Internet access,
they can still communicate with other devices on the LAN without users’ involvement using,
for example, the UPnP protocol [43, 48]. This can lead to cross-device exploits and escalation
attacks [5, 88].

Figure 2.1 also presents the networking setup of the example smart device deployment. Lo-
cal devices talk to a variety of external hosts, including vendors’ proprietary cloud, third-party
automation services (e.g., IFTTT), and possibly generic cloud service providers like AWS and
Azure. Considering that every device in this example is publicly reachable, it is concerning that
Device A still uses an outdated version of OpenSSL (1.1.0a) compared to newer alternatives
(Device B’s 1.1.0c). If there is any publicly known vulnerabilities in the older library, Device A
may be susceptible to attackers from both local and public networks.

Many prior efforts have looked at the IoT security challenges [84] and proposed mitiga-
tion approaches leveraging better network designs. Dreamcatcher [23] uses a network attribu-
tion method to prevent link-layer spoofing attacks. Simpson et al. [74], DeadBolt [42], and
SecWIR [49] propose adding features and components on network routers to secure unencrypted
traffic. HoMonit [94], Bark [35], and HanGuard [17] propose finer-grained network filtering
rules and context-rich firewall designs.

2.2 Analysis of Third-Party Libraries in IoT Devices
Although it is common practice for software developers to integrate mature third-party libraries
into their applications, we found a lack of concrete evidence on how popular these libraries are
in IoT device firmware and how well they are maintained. Therefore, in this section, we set out
to address two key questions largely unanswered by previous work. Specifically,

• How prevalent is third-party library usage among existing IoT devices?
• How diligent are device vendors when it comes to releasing firmware updates that patch

critical security vulnerabilities?
Several prior work [12, 56, 95] have studied the prevalence of vulnerabilities in embedded net-
working equipment, some of which can be attributed to unpatched third-party libraries. A recent
study focusing on smart appliances reports similar findings [2]. However, these studies do not ad-
dress the state of affairs on current IoT devices, and in particular on how frequently libraries are
used and updated. To fill this gap in our knowledge, we conducted a measurement study on 122
firmware releases from 26 devices and 5 popular vendors and present the results in this section.
We find that third-party library use is prevalent, and even more concerning, that security-essential
libraries like OpenSSL often remain unpatched for hundreds of days.

2.2.1 Data Collection
Retrieving Library Information. We collected large number of library usage information
from well-known smart device vendors by searching for GPL library disclosure information,
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Vendor Belkin TP-Link Ring Nest D-Link Total
Devices 12 3 1 7 3 26

Firmware 12 3 1 74 32 122
Libraries 80 5 53 290 93 441

Library versions 103 5 55 400 114 654

Table 2.1: Summary of devices and vendors included in the measurement. We skip firmware for
network equipment since our focus is on smart devices.

as this disclosure is required by the license terms. Compared to alternative approaches such as
extracting library information from firmware binary (using tools like BAT [33] and OSS Po-
lice [20]), we believe our approach is more efficient, accurate, and easier to scale up to large
number of firmware. However, our approach only applies to libraries with GPL licenses, lim-
iting our dataset’s coverage. As a result, our analysis will under-represent the true prevelance
of library usage, but we believe our insights regarding the third-party library patching frequency
and vulnerability management will apply to other libraries as well.

Firmware Selection. Using the previously described approach, we collected 122 firmware re-
leases from 5popular device vendors (Belkin, TP-Link, Ring, Nest, and D-Link). These vendors
provide consistent and detailed information about their firmware release history with necessary
information about third-party libraries. Table 2.1 summarizes our dataset. Nest and D-Link pro-
vide the most comprehensive information about their firmware release history, dating back to
2011. We use these historical releases to analyze longitudinal patching behaviors. Belkin and
TP-Link maintain public information for a single firmware version for each device still under
support. Ring releases one summary for all open-source libraries used in their devices, which we
categorize as a single generic device with a single firmware release.

2.2.2 Results and Findings

We present the findings from analyzing the dataset collected from the previous section. We
found concrete evidences to show the extensive usage of common third-party libraries across
IoT devices and vendors, as well as the underlying security risks from mismanaged libraries and
lack of security patching.

Library Prevalence. As expected, we found extensive usage of common third-party libraries
in all of our collected firmware. Figure 2.2 lists the most popular libraries, as more than 50% of
the devices in our dataset use them. The most ubiquitous libraries are OpenSSL and BusyBox,
which are used by 92.31% and 88.46% of the devices. On the other hand, we also notices a long
tail distribution of the diversity of libraries used by different IoT devices. Table 2.1 shows there
are a total of 441 libraries used across our dataset, many of which are unique for the specific
device or a particular vendor.
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Figure 2.2: List of the most common libraries in all 26 devices across vendors. Among 26
devices, over 50% use these libraries. The most popular ones, OpenSSL and BusyBox, are used
by 92.31% and 88.46% of devices. We also show the percentage of vendors who use these
libraries on their devices.
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Figure 2.3: Number of publicly known OpenSSL CVEs in firmware releases. X-axis shows the
firmware release date. We do not have CVE severity breakdowns for data prior to August 2014
(the red dashed line). For newer libraries, we find many High and Moderate CVEs present in the
firmware.

Patching Practices. In this section, we perform a longitudinal analysis of firmware release
history to understand the security risk of third-party library usage and poor management. By
cross referencing each device’s firmware release with the history of the library’s security updates,
we can analyze vendors’ patching behaviors in terms of average delays in responses and the
duration for devices to operate with outstanding exploits.

We focus our analysis on the OpenSSL library, one of the most widely used libraries in
the dataset. We leverage OpenSSL’s well-documented history of security updates and exploit
disclosures [58] as a reference for vulnerabilities in each library version. Since the historical data
are only available for Nest and D-Link devices (Table 2.1), we pick the 100 firmware releases
from these vendors that use the OpenSSL library, spanning a 7-year period.

Overall, we observe that IoT devices do not use the latest available library versions for the
vast majority of time. For example, the Nest Learning Thermostat only uses the latest available
library 21% of the time (465/2183 days). For the remaining time, the device firmware operates
with outdated versions. Even worse, the Nest Protect and all of the D-Link devices in the dataset
never utilize the latest OpenSSL library over multiple years. They keep operating with legacy
versions for as old as over a thousand days behind the patching schedule.

As a consequence, even new firmware often contain multiple publicly-known vulnerabilities
as soon as they are released. We take an in-depth analysis using the example of Nest Learning
Thermostat. Figure 2.3 presents the number of OpenSSL CVEs in each Nest firmware release.
We also include the CVE severity breakdowns for dates after August 2014 (when data are avail-
able). It is important to note that all of these vulnerabilities can be avoided if the firmware uses
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Figure 2.4: Capture system architecture. Every device consists local device firmware and driver
on the hub. They form a logical unified entity, Virtual Device Entity (orange dashed box). The
Capture Hub maintains a central version of common libraries and has extra monitoring and en-
force modules.

the latest available OpenSSL versions at the time of its release.

2.3 Centralized Library Management for Heterogeneous IoT
Devices

To mitigate the security threats from using outdated third-party libraries, we propose Capture, a
novel system architecture for deploying IoT devices with centralized library management sup-
port. This section briefly describe the design of Capture and key technical insights in the design
and implementation of Capture’s architecture.

2.3.1 Design Overview
We introduce the design of Capture Hub, a central entity in the local home network that manages
library security updates and enables other devices to share the library runtime. Figure 2.4 illus-
trates the system architecture in a home network with multiple devices. Every Capture-enabled
device consists of two parts: firmware on the device (Firmware A* and B* in the example)
and drivers on the hub (Drivers A* and B*). Developers can leverage the API from Capture li-
braries to implement both components, or use the default drivers to migrate existing applications.
Since the hub maintains the shared libraries, individual devices can only use the libraries in their
drivers. The Capture Hub’s Monitor and Enforcement module manages all drivers and provides
runtime and network isolation to ensure integrity of individual devices.

Threat Model and Security Goals. We assume the central hub (i.e., the Capture Hub) is
trusted, and all standard network protocols and Linux security tools we used are up-to-date to
address any vulnerabilities. We assume IoT devices need to communicate with arbitrary hosts for
functionality purposes, making whitelist-based approaches limiting devices to selected network
hosts (e.g., vendors’ cloud backend) [35, 42] too restrictive.

We consider an adversary who seeks to compromise IoT devices through publicly-known
vulnerabilities in outdated libraries. To achieve this, the adversary can attempt exploits from the
public Internet (outside of the local network) or affect more co-located devices in the same home

10



August 15, 2022
DRAFT

Phase Device Capture Hub

VDE Discovery1

Connect Network2

Request Credential
Respond Credential Generate VDE

Join Network
Reply Ready

Create Driver &
Configure Network

Figure 2.5: Device bootstrap procedure for network isolation. In Step 1, the device connects to
the Capture Hub using a shared setup network. Then it joins a VDE-specific VLAN network in
Step 2 (dashed box).

deployment through already compromised ones. Attack vectors from zero-day vulnerabilities
(i.e., no patches available) and non-library vulnerabilities (e.g., weak passwords) are outside
of the scope of this work. In addition, we exclude side-channel attacks rising from the shared
hub access for multiple drivers in our threat model, although mitigating side channels in shared
execution environment is relatively well studied by prior works [54].

Capture sets out to achieve the following security goals.
• Prevent library exploits. We want to centralize the management of third-party libraries

so that local devices can enjoy the security benefits of using the latest libraries without the
additional burden.

• Preserve device integrity. Because of Capture’s firmware splitting design, we should
protect the communication integrity between the device and the driver running on the hub,
and prevent any entity from intercepting or interfering with the communication.

• Strong isolation. To prevent compromised devices from affecting other local devices,
we must enforce strong isolation between devices and drivers. This goal raises additional
challenges as drivers share the same Capture Hub as execution environment.

2.3.2 Device Virtualization and Isolation

Virtual Device Entity. The key insight of Capture is to virtualize existing, holistic IoT device
firmware into a Virtual Device Entity (VDE) and enforce strong isolation across VDEs. A VDE
consists of the Capture-enabled firmware on the device and an associated software driver on the
hub. Figure 2.4 illustrates two VDE examples. The Capture Hub ensures the communication
integrity and confidentiality within individual VDEs and provides isolation across VDEs with
approaches described in later sections.

Communication Isolation. A Capture-enabled device effectively operates in a “local-only”
mode since it can only communicate with its driver within the same VDE. To preserve integrity
and confidentiality, the Capture Hub isolates VDE’s network and blocks cross-device and cross-
driver communication. We achieve this design by leveraging virtual network interfaces and sub-
nets.

Figure 2.5 illustrates the process of new device bootstrapping and the initialization of VDE-
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specific network. A device first connects to the setup network with pre-shared credentials, similar
to existing home WiFi (Step 1 ). The hub creates a fresh VDE credential and generates a new.
virtual network setup for the VDE. After receiving the credential, the device disconnects from
the setup network and reconnect to the operation network (Step 2 ). The operation network is
unique for each VDE so the hub can easily enforce isolation.

The Capture Hub maintains multiple virtual VDE networks by managing two separate WiFi
Access Points (APs) simultaneously. The first AP is for the setup network shared by all uninitial-
ized devices. We set it up with WPA2-Personal protocol, the same as traditional home networks.
The second AP is set up with WPA2-Enterprise security protocol for the operation networks.
The hub generates unique credentials (using RADIUS server) for every VDE and bound each
physical device with its own virtual network interface (vNIC). The hub only needs a single
WPA2-Enterprise AP to support multiple operation networks in parallel. To limit drivers’ com-
munication capability, we enable TOMOYO [75], a Linux security module, to bind the driver to
the VDE-specific vNIC, and use iptables to block other network communication.

Resource Isolation. Since multiple drivers run on the same Capture Hub, it is important to
impose secure and fair resource sharing on the hub. One option is to containerize all drivers
to achieve process isolation. However, they are not suitable for Capture since every container
will have its own library dependencies and runtime. Instead, Capture centralizes the library
management by maintaining a single copy of the up-to-date library and enable drivers to share
the library with Capture APIs.

Capture utilizes lightweight Linux security primitives to isolate processes and limit the driver’s
access to system resources. We assign all processes from the same VDE into their own TOMOYO
security domain and enforce security policies to limit their access to the network and filesystem.
Each VDE also has its own Linux user account on the hub, so we can utilize all standard Linux
filesystem and memory protection mechanisms. We also leverage cgroups [34] to enforce fair
sharing of computation resources across different VDEs.

2.3.3 Security Analysis
In this section, we analyze Capture’s design and how it can prevent internal and external threats
from compromising our security goals. We believe our analysis is comprehensive and demon-
strates Capture is secure by design, under our threat model (§2.3.1).

External Threats. Capture protects devices from external threats (i.e., Internet attackers) by
removing connectivity of local devices and securing the companion drivers on the hub. Since
the Capture Hub maintains the third-party libraries, drivers can utilize the latest library versions
whose vulnerabilities are patched automatically. As the public-facing components, drivers in
every VDE are reachable from the Internet but meet our security goals of being vulnerability-
free.

On the other hand, the actual device may still contain outdated libraries in their firmware.
Capture’s network isolation prevents external entities from reaching local devices and exploit-
ing the vulnerabilities. This security protection is contingent on vendor adoptions and proper
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implementation of the driver software.

Internal Threats. We consider internal threats which include compromised devices, drivers,
and other devices within the WiFi range. Capture prevents compromised devices from attacking
other VDEs through network isolation, because each device is bound to its own vNIC and can
only communicate with its driver. Similarly, compromised drivers are also isolated from other
VDEs through the network and resource isolation on the hub. Moreover, malicious devices (in-
cluding Capture-incompatible ones) cannot eavesdrop VDE credentials from the setup network,
which is shared by all uninitialized devices. This is because WPA2 uses link layer encryption
with unique keys for individual devices [49, 81]. However, this encryption is insufficient for
Capture’s VDE isolation because all drivers running on the hub share the same link layer.

An adversary can potentially impersonate as the Capture Hub and perform man-in-the-middle
attacks during the device bootstrap process. This threat can be mitigated by using techniques
such as certificates and public key infrastructures for identity verification. Alternatively, we can
integrate recent works in secure device bootstrapping to alleviate this issue [29, 68].

2.4 Integration Approaches
We envision one of the major adoption challenges for device vendors is to integrate existing
devices with Capture. In this section, we describe several integration solutions aimed at reducing
developer efforts. Our goal is to provide paths of least resistance to help with device vendors
while providing programming flexibility.

OS Library Replacement. The first approach is to provide a Capture-enabled version of the
standard OS library. For example, ESP32 microcontrollers use APIs from the WiFi.h header
file for networking functions. We provide a CaptureWiFi.h header that is fully compatible
with the default library APIs. Developers just need to replace the header file and import the new
Capture runtime library. We also provide a default Capture driver, so developers can directly
integrate their devices into Capture. However, this approach is heavily platform-dependent and
it will require more engineering efforts to extend to more operating systems.

IoT Framework SDK Extension. Similar to the previous approach, we implement another
drop-in replacement library for a common IoT development framework SDK. IoT frameworks
(e.g., Azure Sphere [52], Particle OS [61], and Samsung SmartThings Device SDK [65]) provide
rich set of functionalities across multiple hardware platforms. They help application development
by integrating with their native cloud backend and services.

We develop a replacement library for the Samsung SmartThings Device SDK (ST-SDK) as
a proof of concept. We select this framework because its SDK is open-source so we have a
reference implementation. In addition to the typical networking functionaility, ST-SDK also
facilitates MQTT messages with the existing SmartThings Hub (ST-Hub) as a data broker. We
recreated similar functionalities with a Capture-enabled ST-Hub and provide default drivers for
ST-SDK devices as well.
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Native Driver Development. The previous two approaches provide default drivers on the Cap-
ture Hub to aid developer adoption. In addition, we provide a full set of Capture APIs for devel-
opers. With the added flexibility, developers can create their own device drivers to achieve better
performance and efficiency.

2.5 Overview of Evaluation
We now briefly summarize the results of our evaluation of the Capture prototype with several
smart devices implemented from the open source repositories. A more detailed evaluation is
available in our full paper [92].

Implementation. We implement the Capture Hub using a Raspberry Pi 3B+ with Linux in
1874 lines of C++ and we have open-sourced our prototype implementation at https://gi
thub.com/synergylabs/iot-capture. We integrate 9 prototype IoT devices and
applications into the Capture prototype on a variety of hardware platform and operating systems
(ESP32, Raspberry Pi, Samsung SmartThings, and Linux).

Optimizations. Our baseline applications often use blocking network calls since their pro-
gramming paradigm directly fetches payload from the network buffer. This assumption no longer
holds after we integrate these applications into Capture, since those networking calls will be
translated into communication between the device and driver. Keeping these blocking network
calls as-is leads to a latency increase up to 9.56x. We implemented several optimization solu-
tions to alleviate this added communication overhead. First of all, we implement read and write
buffers on the device to prefetch network packets and buffer outgoing messages. This buffering
reduces latency from 9.56x to 1.62x. We further analyzed the network packets with Wireshark
and identify the latency bottleneck from sending multiple small packets. As a result, we aggres-
sively merge smaller packets into bigger ones and extend the protocol header fields to support
multiple packets. With these optimizations, we reduce the total communication overhead for
each operation to around 10 ms; as a reference, it takes the IoT device (ESP32 board) 5-6 ms to
send a single network packet.

Performance Overhead. We measure Capture’s overhead running the 9 prototype apps and
compare them with the original versions. Figure 2.6 shows the relative overhead normalized
with the original baselines. Most apps experience a latency increase less than 23 ms. Sometimes
the latency improves because they can offload computationally expensive operations to a more
capable platform (ESP32 to Raspberry Pi). The camera app experience a significant latency
increase (+297 ms) and throughput reduction (−42%). However, the relative increase is on par
with other apps (e.g., MagicMirror) so we conclude that even the original version is not suited
for real-time monitoring use cases.

In addition to microbenchmarking with prototype apps, we integrate Capture-enabled devices
with a home automation platform (IFTTT [38]) to measure its real-world performance impacts.
We create three aotumation applets involving the device and measures the end-to-end latency
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Figure 2.6: Performance overhead for all prototype apps. Data are normalized to results from
the original apps. Based on geometric means, Capture-enabled devices experience 34% latency
increase, 34% throughput reduction, and 10% more on-device resource utilization. Abbreviation
for these apps are Web Server (WS), Servo Motor (SM), Color Picker (CP), Weather Station
(WS), Temperature and Humidity sensor (TH), Camera (CAM) in streaming and picture-taking
modes, SmartThings Lamp (ST-L), SmartThings Switch (ST-S), and MagicMirror (MM).

on different Capture devices (ESP32 and Raspberry Pi). Overall, we do not observe significant
differences and attribute the majority overhead to the automation platform’s cloud backend, since
their latencies are usually several seconds [51].

Scalability. The main scalability bottleneck is the computation resources on the Capture Hub,
since all local devices require a driver to be executed on the hub. We identify the hub’s memory
capacity as the key limiting factor compared to other resources such as CPU, IP addresses, and
network interfaces. Drivers’ memeory consumption ranges from 3.7 MB to 42 MB, depending
on their implementation. Therefore, we emulate a deployment of 40 devices using the smallest
drivers and 10 devices using the largest drivers. This emulation consumes 664 MB memory
on a Raspberry Pi 3B+ based Capture Hub (1 GB RAM, quad-core) and the CPU load average
never exceeds 0.8 (max of 4.0). While RAM capacity is a limiting factor, alternative hardware
platforms (e.g., Raspberry Pi 4 with 8 GB RAM) for the Capture Hub can improve the scalability
to hundreds of devices.

2.6 Conclusion
This section of the proposal illustrates the benefits of offloading library management responsi-
bilities for IoT device vendors to a trusted third-party. Based on historical data, we can identify
the necessity of better library management and timely security patching for future IoT devices.
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To achieve our goal, we propose the design of Capture, a new system architecture for IoT de-
vice deployment. We demonstrate that Capture is a practical solution to mitigate the security
challenges rising from the prevalent use of outdated libraries while maintaining the security and
performance requirement of individual IoT device vendors.
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Chapter 3

Protecting IoT Device Users by Offloading
Ownership Management and Access
Control

The previous section showed the opportunity to improve the security protection of individual
IoT devices through offloading the library management tasks to a central service. In addition to
security concerns, many IoT device users worry about the potential privacy implications with the
ubiquitous IoT device deployment and the breadth of the sensitive data they can collect [9, 22,
31].

Although IoT device vendors already have basic access controls in their existing applica-
tions, those systems are not sufficient to handle complex use cases in future IoT deployments.
Specifically, many prior works have looked into how to improve IoT device’s authorization and
delegation systems’ expressiveness [8, 25, 39, 66], decentralized storage models [7, 21, 62, 69],
and cryptographically enforced access policies [37, 44, 47, 59, 70, 71, 80]. One common pitfall
of these approaches is that they primarily focus on addressing privacy concerns of the device
owners and fail to take into account of concerns from other stakeholders. For those whose data
may be captured by the IoT device, they have to trust the device owners or the small group of
device administrators.

In this section of the thesis, we describe our work on the design of a new IoT device ownership
model (TEO — IoT Ephemeral Ownership) giving direct controls to the device stakeholders —
who may be impacted by the presence of the device — and the implementation of a new system
architecture enabling such a model. This architecture splits the role of maintaining secure data
storage and managing access controls of users’ private data from the list of responsibilities of
current IoT device vendors into a third-party service. More importantly, we limit the trusted
computing base and avoid any trusted requirement for the cloud and storage service providers.
At the same time, the owners of the data retain controls and make the ultimate decisions on who
can access their data. To provide strong security guarantee, we apply formal security analysis
and verify the proposed protocol design satisfies all of our security goals.

The rest of this section describes TEO at a high level. Additional details on our completed
work in this space are presented in a full paper on this topic [93].
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3.1 Background
This section provides background on the challenge of protecting stakeholders’ privacy in future
IoT deployments and the limitations of many existing access control systems for current IoT
devices.

Stakeholder Privacy. Recent works have identified the emerging challenges due to the discrep-
ancy between decision makes and device users in complex IoT deployment scenarios [15, 31, 91],
motivating the need for stakeholder privacy protection. Some of the prior work examine privacy
issues from the perspective of bystanders [9, 83] and incidental users [14]. Moreover, research
on preventing intimate partnet violence (IPV) for smart devices [27, 28, 30, 60, 78] also echoes
the needs for stakeholder privacy. All of these works touch upon the of an effective IoT device
access control mechanism capable of protecting all stakeholders of the device — anyone using
the device or may be impacted by the device because they are in the vicinity of the device — and
motivate our thesis’s contribution.

IoT Device Access Control. Motivated by real-world incidents and research findings [85],
researchers have proposed many improvements on existing IoT access control systems, as sur-
veyed by He et al. [32]. A few improvements include expanding the policy language with more
expressiveness [8] and contextual information in smart homes [25, 39, 66] and extending the
access control to support multiple users and devices in the same home [73]. Moreover, many
new frameworks leverage decentralized solutions to distribute the trusts in enforcing access con-
trols [4, 7, 21, 62, 69]. Finally, the use of novel cryptographic constructions to facilitate access
control and delegation has been presented by several recent works [37, 44, 47, 59, 70, 71].

3.2 Enabling IoT Ephemeral Ownership
To address stakeholders’ privacy and security concerns, we envision a new model of device own-
ership that protects the interests of both the device users and its administrators. We propose the
design of TEO — IoT Ephemeral Ownership — that grants users, as ephemeral device owners,
full control over the device’s operation. Historical data collected by the device will always be-
long to their ephemeral owners at the time of collection. When someone wants to access the data,
they must receive permissions from all of the data owners (stakeholders when the data are col-
lected). Meanwhile, device administrators can decide who is capable of becoming an ephemeral
owners, but they can not interfere with the device’s operation or access private data captured by
the device without owners’ approval.

3.2.1 Target Use Cases and Design Goals
TEO aims to provide ephemeral owners full control over who can access their data and when, ag-
nostic of the data type. Therefore, TEO is well suited for applications and IoT devices that store
operational data potentially containing sensitive information about their users, such as recordings
from cameras and speakers or sensor readings. For data access requests, we primarily focus on
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use cases where someone wants to request historical data for analysis purposes, such as training
machine learning models or review past events.

Since TEO devices maintain their current list of owners, we can extend TEO to enable real-
time access control of the device as well. For example, a TEO-enabled smart door lock should
reject commands issued by previous owners after a new user claims exclusive ownership. To
achieve this, the device can require all incoming commands include an authorization certificate
signed by the owner. In addition, we believe it would be a promising future work to extend
TEO with proof-carrying authorizations [6, 8, 10, 45] for more expressive policy specification
languages.

TEO targets a variety of IoT deployment scenarios beyond personal homes, such as rental
homes and shared offices. They have different design requirements nd considertaions. In rental
homes (e.g., Airbnb), the host sets up smart devices and lets guests use them. Guests have lower
churn rate (each stays a few days) and smaller group sizes. Sometimes, a single owner would
suffice as group members implicitly trust each other if they stay together. On the other hand,
smart devices in shared offices and conference rooms have more frequent user changes and the
group of users often expect to have an equal say in decision makings. Although these devices
are managed by the building managers, TEO aims to protect the actual device users with their
private data.

Design Goals. We want to achieve the following design goals with the new ownership model:

1. Flexible Association of Devices and Users. We expect frequent occupancy changes in
the physical spaces with smart devices. A conference room may see ownership change
happening on an hourly basis. Moreover, multiple users can share the same space and
hence be collectively impacted by the device. Ideally, all stakeholders should have a say in
controlling the device and managing the access decisions of the data.

2. Preserving Data Ownership. Data collected by smart devices should always belong to
the group of users present at the time of capture. Anyone trying to access the data should
request the data owners’ permissions. More importantly, dynamically changing ownership
of the device’s users and administrators should not affect historical data.

3. Decentralized Trust. Users should be able to manage access requests themselves, without
relying on any external trusted third-parties. Centralized access control systems require
users to fully trust the system maintainers (e.g., company and building owners) and in
their capability of protect user data and enforcing correct privacy policies. We want to
empower users to decide who can access their data without compromising the benefits of
high efficiency and availability currently provided by centralized services.

4. Verified Security. Our goal is to provide strong security guarantees for our proposed TEO
system. To do so, we leverage formal methods and verification tools to reason about our
design and potential security vulnerabilities. Since the main component of TEO is a set of
complex communication protocols designed to enable the new ownership model, we turn
to the protocol verification tools to provide assurances of TEO’s security and correctness.
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Figure 3.1: Overall TEO workflow. An admin initializes the device ( 1 ). Next, the user claim
device ownership with the admin’s pre-approval ( 2a and 2b ). During normal operation ( 3 ), the
device encrypts users’ data and uploads it to storage. A requester can download the data ( 4 ),
but needs the owner’s approval to decrypt it ( 5 ). To revoke access, the user can directly issue a
request to the storage provider ( 6 ).

3.2.2 Threat Model
We design TEO under the assumption of a power attack who can monitor all network commu-
nications and attempts to undermine TEO’s design goals by either (1) controlling the device
without active consent of the ephemeral owners, (2) accessing the data generated by the device
without owners’ permissions, or (3) impersonating one of the parties in the TEO architecture.
Concretely, such an attacker might correspond to someone within the vicinity of the device, a
malicious admin who wishes to violate the privacy of an ephemeral owner, or a previous device
owner who aims to extend their control of the device and its data past the agreed-upon terms.

We assume that local devices are trusted to correctly execute the protocol and will not mali-
ciously leake user data, encryption keys, or bypass authorization checks. We assume that third-
party storage providers may be passively malicious (i.e., semi-trusted, honest-but-curious): they
might attempt to extract private information from the data they receive but will faithfully execute
the TEO protocol as specified. This is consistent with using reputable cloud service providers,
with whom users may not trust storing cleartext data but for whom the reputation risk stemming
from actively-malicious behavior is too great.

3.3 TEO Workflow
In this section, we provide a high-level overview of TEO’s workflow and its key technical con-
tributions. For more in-depth information, please refer to our full paper [93].

Figure 3.1 illustrates the workflow of multiple TEO entities. The admin of the device (e.g.
the Airbnb host) first installs the device and initializes it (Step 1 ). Afterward, the device is ready
to be claimed by the new owners only if they are authorized by the admin. The potential users
(e.g., Airbnb guests) all have a user agent program running on their phones. After booking their
reservation, they need to ask the host to issue “pre-auth tokens” with everyone’s public keys (Step
2a ). Pre-auth tokens prevent unauthorized people such as malicious neighbors from access the
device. When users arrive at the rental home, the user agent on their phones initiate the ownership
claiming process (Step 2b ). As the group membership changes (users join and leave), the device
dynamically adjusts the set of current owners. The device preserves users’ data ownership with
a series of encryption operations and distributes individual keys to each owner (Step 3 ) and
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uploads the encrypted data to third-party cloud providers for storage. When someone wants to
access the data (Step 4 ), they need to seek permissions from the original owners to decrypt them
(Step 5 ). Later on, if the user wants to revoke the access, they can contact the storage provide
directly and issue re-key tokens to invalidate previously distributed decryption keys to the data
requester (Step 6 ).

3.3.1 Data Storage and Access

To preserve users’ ownership of the data generated by the device, one approach could be to trans-
mit data directly to the user and let them store the data locally. This would be too demanding for
average users in terms of technical knowledge and computation resources. Instead, we leverage
third-party cloud storage providers to facilitate the storage challenge. Since we do not trust the
storage provider with users’ raw data, the device must encrypt the content before uploading to
ensure confidentiality. This poses several challenges, including how to enable revocable access
controls and how to support dynamically changing user groups.

Revocable Access Control. To manage access to encrypted user data, data owners can decide
who to share the decryption keys with. However, standard symmetric key encryption can not
address the need for revoking third-party accesses. An inefficient approach to do so would be to
download all ciphertext to the user’s device, decrypt and re-encrypt with new keys, then upload
them again. Instead, we leverage key-homomorphic encryption algorithms proposed in prior
works [80] to implement an efficient, revocable access control mechanism.

In addition to encrypting users’ data with fresh session keys (with symmetric key encryption),
the device performs another round of encryption to protect the value of the session key using key-
homomorphic encryption to support efficient revocation. When delegating access, data owners
can share the key used for the homomorphic encryption so the data requesters can eventually
decrypt the original data. To revoke access, data owners can create a fixed size rekey token
and send it to the storage provider. The storage provider can apply this token in-place on the
ciphertext to change the decryption key, without being able to access the underlying plaintext.

Group Ownership. To extend TEO to support group ownership, we leverage threshold en-
cryption and Shamir Secret Sharing [72] to split the single session key into multiple key shares.
We create one share for each owner in the current group and send it to the corresponding owner.
Owners manage their key shared independently and make access delegation decisions individ-
ually. To access the shared data, the requester needs to seek permissions from each owner and
obtain enough key shares to reconstruct the session data key.

We conclude by noting that threshold encryption can support several data access policies
by adjusting the threshold value necessary to reconstruct the original content. Currently, TEO
requires accessors to have every group member’s approval because we want to give everyone the
right to veto the request. It is straightforward to extend TEO with alternative policies such as
majority approval.
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3.3.2 Formal Security Analysis and Protocol Verification

We want to verify and ensure that TEO’s design is secure and does not contain any vulnerabili-
ties compromising the intended security and privacy protections. To obtain a definitive answer on
our design’s security and correctness, we leverage protocol verification tools to formally analyze
TEO. We choose a symbolic protocol verifier (ProVerif [11]) among other alternatives (e.g., com-
putational verifiers) because it requires lower human guidance and is better suited for automated
analysis given we want to identify design-level bugs in TEO’s protocol. Hence, we implicitly
assume the cryptographic primitives are secure and exclude their computation details from the
formal security analysis.

Formalize Security Goals. We set out to achieve the following security goals for TEO.
• Secrecy. A user’s private data should not be accessible by anyone without explicit autho-

rization of the user. For group ownership, the policy requires that only entities with the
consent of all owners are able to access the data.

• Mutual Authentication. After the device is initialized and claimed by owners, all parties
must mutually authenticate and agree on each other’s roles.

• Resilience to Data Spoofing. Attackers should not be able to spoof data, potentially over-
whelming users’ local storage space with keys for non-exist data sessions. If the user
concludes a data store operation, then the device must have indeed stored the user’s private
data for the corresponding session.

• Effective Revocation. If the owner revokes someone’s access, the they should no longer
be able to decrypt the data if they download the ciphertext again from the storage provider.
Conversely, revocation should only happen when the owner requests, and the new key
should be able to used to decrypt the data in the future. Note that TEO does not preclude a
requester from storing the decrypted data offline in perpetuity.

We encode every security goal with concrete ProVerif’s reachability and correspondence queries.
We translate these security goals in the format of “if A happens, B must have already happened”
and ask the tool to search for property violations. In addition, we add secrecy queries to ensure
user’s private data stay unknown to the attacker.

Expand to Group Ownership Models. To support group ownership, we utilize Shamir Secret
Sharing as explained earlier. However, ProVerif currently does not have native support of thresh-
old encryption [55], particularly for encoding variable-sized sets of co-owners. To address this
limitation, we encode the size of the owners statically in the model. Moreover, all parameters
used for cryptographic operation must also be set statically, such as the number of users and
decryption threshold. We have to create unique processes for every user in the group to manage
their internal states and key shares. As the group size grows, it is very challenging to manually
encode these parameters and processes, especially since we often change the designs in the itera-
tive protocol revision process. Therefore, we develop a custom template language that automates
the generation of static models and implement a preprocessor to compile the protocol template
into concrete ProVerif models with configurable group sizes.
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Operation
User App

Battery (µAh)

Average Latency ±
Standard Deviation (ms)
RPi 4 RPi Zero

Initialize Device 20.18 44± 9 65± 35

Acquire Pre-Auth Token +
Claim Device

34.43 187± 52 258± 128

Claim Device 21.19 67± 10 94± 31

Store Data, 1MB 43.03 308± 57 684± 155

Access Data, 1MB 22.25 170± 54

Revocation and Re-encrypt 25.07 62± 15

Table 3.1: Average latency (in ms) for TEO operations, with a performance comparison of
different IoT device hardware. We also measure battery usage for the TEO phone app (in µAh).
Data access and revocation operations do not involve devices’ participation.

Data Size Data Encryption Data Upload Total Time (vs. Upload Time)
10KB < 1 19 101 (5x)
100KB 2 29 116 (4x)
1MB 25 127 308 (2.42x)
10MB 168 1429 1791 (1.25x)
100MB 1577 15256 16293 (1.07x)

Table 3.2: Data store operation mean latency breakdown for Raspberry Pi 4, in ms.

3.4 Overview of Evaluation
This section provides highlights of TEO’s evaluation on our prototype implementation. Our eval-
uation results demonstrate that TEO introduces nominal communication and power consumption
overhead. For one-time operations like device setup and ownership transfer, TEO adds additional
latency of up to 187 ms. When the device continuously storing user data during operation, TEO
adds 7-25% extra latency compared to directly uploading the content to the cloud storage for
larger file sizes and 101-308 ms for smaller sizes.

Implementation. We implement our TEO prototype on multiple platforms and release an
open-source repository at https://github.com/synergylabs/TEO-release. We
develop an Android app as the mobile agent program for end-users and device administrators.
We also implement test clients for different roles on x86 Linux desktops and popular single-
board computers with ARM SoCs (Raspberry Pi 4 and Zero W). Moreover, we develop a storage
provider daemon as a key-value store for encrypted data contents with support for revocation.

Performance Overhead. Table 3.1 presents TEO’s battery and latency overhead in microbench-
mark results. Several operations such as device initialization and revocation are lightweight,
while the initial claiming of a device has higher latency. Although operations related to data
storage and access requests seem to have very high latency, we need to compare them to their
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baseline of data uploading and downloading to the cloud storage providers for a fair comparison.
Table 3.2 shows a breakdown between data upload time and encryption time in such operations.
For larger data sizes, the relative encryption overhead is much smaller (7-25%).

Integration Efforts. We integrate three real-world smart IoT applications into TEO-enabled
devices. We found them by searching for popular open-source IoT applications on Github and
tutorial websites. In all three cases, we extend their original implementation with new function-
alities using TEO for secure data store and real-time ownership management. In general, the
integration process requires minimal codebase changes (¡121 lines) because we provide TEO de-
vice driver as a standalone program with REST APIs exposed to other programs running on the
localhost. Overall, the performance overhead in these applicaitons matches our microbenchmark
results.

3.5 Conclusion
This section of the proposal illustrates the added benefits for IoT device vendors to offload the
role of ownership management and access control enforcement to third-party services. Specif-
ically, device users can enjoy better privacy and security protections and directly control how
their data can be accessed. By proposing the design of TEO, we materialize this vision with a set
of formally verified operation protocols to ensure their correctness and security. We demonstrate
TEO’s practicality in terms of low performance overhead and ease of device vendor adoptions
with our evaluation results from the prototype implementation.
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Chapter 4

Proposed Work: Efficient Computation
Offloading for IoT Devices with Neural
Network Applications

Thus far, this proposal has been focusing on addressing the security and privacy concerns, mostly
from the device users’ perspective, and assumes device vendors would be interested in adopting
these approaches to stay attractive to end-users. In the final part of this thesis, we will investigate
another opportunity for functionality splitting that is directly relevant to the device vendors’
incentives and provides stronger motivation for device vendor adoption.

There is a mismatch in the computation demands and the total available computation re-
sources in a deployment of heterogeneous IoT devices. Currently, device vendors have to rely
on their individual cloud backend to perform heavyweight computations because of limited re-
sources on the device. Meanwhile, many other IoT devices and general purpose computers are
sitting idly in the same user’s home.

We propose a new architecture, VeriSplit, that enables local IoT devices to share computation
resources, with a specific focus on the emerging machine learning applications. By offloading
computation to other devices, vendors of the offloading devices can reduce spending in their
cloud backend for those transient computation demands. On the other hand, the worker devices
can receive incentives for leasing out their idle resources.

To enable computation offloading across devices from different vendors, we must address
several interesting security and efficiency challenges. First, offloading devices must be able to
verify the correctness of the computation results generated by worker devices. Workers may
generate wrong results because there is no explicit trusts between the two parties. Second, the
local offloading overhead must be reasonable when compared to the existing cloud offloading
solutions. This is especially challenging with the additional communication needed for verifica-
tion. Finally, offloading devices may want to keep their machine learning models private from
the worker devices. However, workers need the model to perform computations. Therefore, it is
important to provide model privacy in the offloading mechanism.

The rest of this section describes the preliminary design of the VeriSplit system architecture
and our proposed solutions for addressing the challenges for verifiable offloading of machine
learning applications in IoT devices. We will implement these solutions and perform a compre-
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hensive evaluation of the system prototype to finish the remaining work of the thesis.

4.1 Background and Motivation

Computation Offloading. Nowadays, smart home users often have multiple IoT devices in-
stalled and these devices have a wide range of hardware capabilities. For example, a cheap
smart camera may only have the bare-minimal hardware to stream videos to the vendor’s cloud,
where many machine learning applications are executed in order to present interesting events
and features to the device user. Meanwhile, more expensive IoT devices (e.g., $1000 robot vac-
uums [63]), computers, and gaming consoles are equipped with powerful hardware (potentially
with accelerators for machine learning) are sitting idle in the user’s home most of the time. It is
a great opportunity to pair these devices together to satisfy the computation demands.

Many prior work have proposed frameworks to enable local computation offloading. One of
the earliest system is HomeOS [19], which aims to aggregate all local sensors and actuators into
one central server to process. More recently, many approaches use a trusted local hub to execute
the offloaded functions [3, 41, 86]. All of these approaches require trusts between the offloading
and the worker devices, creating a very wide trusted computing base.

Verifiable Neural Network Inferences. With the rapidly growing popularity of deep learn-
ing applications, many recent works have looked at the challenges of verifying the inference
results when the computation is offloaded to third-parties. However, most of them focus on facil-
itating verifiable offloading between cloud servers and hold assumptions unsuitable for the IoT
use cases. First, many approaches still require a trusted computing base in the worker devices,
usually using secure enclaves [36, 76, 79]. Second, they often incur significant communication
overhead in order to maintain very high accuracy in verifying a single inference result [53, 76].
These overheads might be acceptable in the datacenter networking condition, but are not suitable
for many IoT devices connected over WiFi.

4.2 Preliminary Design

Figure 4.1 illustrates the high-level workflow of offloading an inference in VeriSplit. The verifier
first sends the input to the worker, and wait for the results along with the inference commit. The
commit is a hash value constructed from all of the neural network intermediate results in this
inference. After receiving the inference result, the verifier request part of the intermediate values
from the worker for verification. The verifier repeat the computation to generate the selected
values. If the results match and the verifier can recreate the original inference commit hash value
with these values, the verifier accepts this inference as correct.

The key insight in VeriSplit is that all of the intermediate values of a particular inference is
encoded into the inference commit succinctly and shared with the verifier (offloading device)
along with the inference result. This commit allows verification to be performed after the infer-
ence is complete. Therefore, the verifier can dynamically decide which past inferences to check
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Verifier / Offloading Device Worker Device

Send Workload

Execute inference and
generate inference commit

Reply Results and Inference Commit

Request Selective Intermediate Values

Reply Requested Values

Verify values
match commit

Figure 4.1: Workflow of VeriSplit in executing and verifying an inference.

and what part of the intermediate values to verify whenever it is idle and has free computation
cycles.

4.3 Performance Overhead and Selective Verification

The goal of VeriSplit is to consistently offload over a long period of time, ensuring the worker
generates correct results in the long run with high probability. Prior works focusing on verifying
single inferences incur a high overhead because they have to check all of the intermediate results.
Since there are multiple inference offloading between the same pair of devices, VeriSplit verifiers
can randomly select part of the intermediate values in every inference to verify, reducing the
communication overhead while retaining high confidence of the correctness. If there are large
numbers of offloading during a fixed time period, the verifier only needs to check a small portion
of the results. On the other hand, if offloading happens rarely, the verifier can check one inference
in its entirety.

To enable selective verification of partial results, we have to break down the outputs of neural
network inference into smaller auditing units, and construct a merkle tree hash of all of these
units. Selecting candidates to check on a layer-by-layer basis is too coarse and will yield incon-
sistent verification overhead, because the output size of each layer varies significantly. Instead,
we choose to further splitting the intermediate activations into smaller sub-matrices to enable
granular verification selection.

4.4 Numerical Errors from Architectural Differences

Generating the correct inference commits for verification requires both the worker and the ver-
ifier have the exact same values for the intermediate results. This should not come as surprises
because we want to rely on hash function’s collusion resistances to ensure correctness. Unfor-
tunately, it turns out that devices might compute slightly different results using the same model
parameters due to the randomness in parallelism on different hardware platforms.
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One concrete example is that we will get different results running GPU inferences versus
CPU inferences. Although the amount of differences (i.e., δ) is insignificant, this yields com-
pletely different hash commits and leads to high false positive rates of verification. On the other
hand, if we simply accept any differences below a threshold to eliminate false positives, ma-
licious workers can easily create incorrect inference results without getting detected (i.e., high
false negative rates). Therefore, we empirically evaluates several δ-mitigation strategies and
found the optimal ones with low false positives and false negatives.

4.5 Model Privacy
So far, we have been focusing on designing VeriSplit for public networks and transfer learning
applications in IoT devices. In transfer learning, developers create their own model by extending
pre-trained public networks with custom classification layers in the end. The vast majority of the
computation still happens in the public networks for purposes like feature extractions. Therefore,
to preserve model privacy of the offloading devices, they can only choose to offload the public
part of their network models and keep running the final layers on the original devices. This
solution will be useful to alleviate the demand for transient computation resources to certain
degrees.

In addition, we will look into alternative solutions to further protect model privacy for of-
floading devices to reduce the adoption concerns of device vendors. One promising technique
is Fully Homomorphic Encryption (FHE) and its application within neural networks. Although
network models integrated with FHE still exhibits significant overhead than their baselines, we
believe it is a promising direction given its recent, orders of magnitudes of speedups from op-
timized algorithms and hardware accelerations [40]. To provide model privacy, device vendors
can encrypt the model weights with secret keys before sharing with the worker devices. During
inference, the worker can only compute over encrypted model parameters and generate a final re-
sults in encrypted ciphertext. Since only the offloading device can decrypt the ciphertext, device
vendors do not need to worry about the leaked model parameters because they are only useful
for their own devices with the decryption keys.

To extend VeriSplit with FHE, we will evaluate the applicability of VeriSplit’s selective ver-
ification algorithm with the intermediate results of FHE networks. A number of foreseeable
challenges include:

• FHE’s usage of finite field elements and how it affects the way VeriSplit splits intermediate
values with fine granularity.

• The lack of mature FHE-enabled machine learning frameworks and efficient, stable imple-
mentations on GPUs.

• Additional optimizations introduced in prior works, such as offline preprocessing, and how
to incorporate these results into the online inference process.
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Chapter 5

Timeline

Time Task
Aug. 2022 Thesis proposal
Sept. 2022 Submit VeriSplit to NSDI
Oct. 2022 – Jan. 2023 Extend VeriSplit to additional machine learning inference

systems, including support for model privacy and verifying
encrypted networks (e.g., Fully Homomorphic Encryption)

Dec. 2022 – April 2023 Job search
Feb. 2023 – April 2023 Thesis writing
May 2022 Thesis defense

Table 5.1: Proposed timeline for completing the thesis.

My goal is to complete the dissertation by May 2023. Table 5.1 summarizes the timeline to
completing the remainder of the thesis.
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